师资队伍

教师名录

何腾武

船舶与海洋工程系

电子邮件:htw1116@sjtu.edu.cn
通讯地址:木兰船建大楼

  何腾武,助理研究员

【工作经历】

  2024- 至今      3003新葡官方网站    3003新葡官方网站    助理研究员

  2021-2023      3003新葡官方网站    3003新葡官方网站    博士后

【教育经历】

  2019-2020       Pennsylvania State University 博士联合培养 (导师: Long-Qing Chen 教授)

  2017-2021      3003新葡官方网站    3003新葡官方网站    博士

  2014-2017          湖南大学           机械与运载工程学院       硕士

研究方向:

(1)深潜器新材料多尺度计算

(2)耐压结构一体化优化设计

(3)强度评估与损伤寿命预测 


担任Scripta Materialia、International Journal of Mechanical Sciences、Materials Science and Engineering: A、Engineering Fracture Mechanics等SCI期刊审稿人。

    承担纵向课题:
    中核集团领创科研项目  项目负责人
    国家自然科学基金青年项目  项目负责人
    上海市自然科学基金项目  项目负责人
    3003新葡官方网站新进青年教师启动计划项目  项目负责人
    上海市"超级博士后"激励计划资助项目  项目负责人
    中国博士后科学基金面上项目  项目负责人

      参与纵向课题:
      国家重点研发计划课题  参与
      国家自然科学基金联合基金重点项目  参与
      上海市协同创新项目  参与

目前,在International Journal of PlasticityInternational Journal of Mechanical Sciences等期刊发表SCI论文30篇,其中一作/通讯20篇。

2025

[31] Jiang Y, He T, Zhao M. Buckling-based topology optimization for underwater pressure hull with modified parameterized level-set method[J]. European Journal of Mechanics-A/Solids, 2025, 110: 105499.

[30] Hu T, Zheng W, Xie H, He T, et al. A cyclic elasto-plastic constitutive model based on physics informed neural network of a pure polycrystalline copper under uniaxial loading[J]. International Journal of Fatigue, 2025: 108857.

[29] Liu C, Hu T, Xie H, He T, et al. Numerical implementation for the cyclic elasto-plasticity model of Inconel 690 considering cyclic hardening followed by softening[J]. International Journal of Non-Linear Mechanics, 2025, 174: 105068.

2024

[28] Cai K, Li F, He T, et al. Tow-way regulation strategy for in-situ electropolymerization additives coordinated by double bonds and boric acid groups in lithium secondary batteries[J]. Chemical Engineering Journal, 2024, 500: 156790.

[27] 高裕浩, 何腾武, 赵敏. 基于 OpenMDAO 的 BLISS-2000 多学科设计优化:流程、策略与参数研究 [J]. 中国舰船研究, 2024, 19(6): 135–149.

[26] Li X, Qi Y, He T*, et al. Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects[J]. Modelling and Simulation in Materials Science and Engineering, 2024, 32(7): 075009.

[25] Chen X, Zhuang S, He T*, et al. New topology design of 3D chiral metamaterials with compression-twist coupling effect[J]. Mechanics of Advanced Materials and Structures, 2024: 1-11.

[24] Chen X, Liu C, Zheng W, He T, et al. A novel 3D Z-shape design of compression-twist coupling metamaterial[J]. Smart Materials and Structures, 2024, 33(7): 075026.

[23] He T, Li X, Qi Y, et al. Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys[J]. Nuclear Engineering and Technology, 2024, 56(4): 1480-1489.

[22] Huang Y, Zheng W, He T*, et al. Crackinclusion interaction in a quasicrystal medium with nonlocal effect[J]. Engineering Fracture Mechanics, 2024, 296: 109868.

2023

[21] Wang Y, Qi Y, He T*, et al. Grain refinement induced by grain boundary segregation in FeNiCrCoCu high-entropy alloys using molecular dynamics simulation of nanoindentation[J]. Materials Chemistry and Physics, 2023, 310: 128489.

[20] Qi Y, He T*, Feng M, et al. (2023). Quantifying the solute-induced additional repulsive force between two partials of pure screw dislocations[J]. Mechanics of Materials, 2023, 186: 104783.

[19] Chen X, He T, Hu Y, et al. A 3D dislocated re-entrant structure with compression-twist coupling effect[J]. Smart Materials and Structures, 2023, 32(5): 055009.

[18] He T, Qi Y, Ji Y, et al. Grain boundary segregation-induced strengthening-weakening transition and its ideal maximum strength in nanopolycrystalline FeNiCrCoCu high-entropy alloys[J]. International Journal of Mechanical Sciences, 2023, 238: 107828.

2022

[17] He T, Chen X, Qi Y, et al. (2022). Phase-field simulation of phase separation coupled with thermodynamic databases in FeNiCrCoCu high-entropy alloys[J]. Applied Physics A, 128(11): 1-16.

[16] Qi Y, He T, Feng M. Molecular Dynamics-Based Tension Simulation of Plastic Deformation of 2D Nanotwinned Copper Under Uniaxial Stress Conditions: Evolution of Dislocations and Secondary Twinning[J]. Metals and Materials International, 2022, 28(7): 1611-1619.

2021年以前

[15] Qiu Y, Qi Y, He T*, et al. (2021). Atomistic simulation of nanoindentation response of dual-phase nanocrystalline CoCrFeMnNi high-entropy alloy[J]. Journal of Applied Physics, 130(12): 125102.

[14] Qi Y, He T, Xu H, et al. Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation[J]. Journal of Alloys and Compounds, 2021, 871: 159516.

[13] Qi Y, He T, Feng M. (2021). The effect of Cu and Mn elements on the mechanical properties of single-crystal CoCrFeNi-based high-entropy alloy under nanoindentation[J]. Journal of Applied Physics, 129(19): 195104.

[12] Qi Y, Xu H, He T*, et al. (2021). Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy[J]. Materials Science and Engineering: A, 814: 141196.

[11] He T, Ji Y, et al. (2021). Stress-dependence of dislocation dissociation, nucleation and annihilation in elastically anisotropic Cu[J]. International Journal of Plasticity, 138: 102927.

[10] Qi Y, Xu H, He T, et al. (2020). Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading[J]. International Journal of Refractory Metals and Hard Materials, 105415.

[9] He T, Feng M, Chen X (2019). Crack interaction with nanoscale twinning near a second-phase particle in fine-grained magnesium alloy. Mathematics and Mechanics of Solids, 24(5), 1243-1255.

[8] He T, Feng M, Chen X. (2019). Martensitic Transformation Effect on the Dislocation Emission from a Semi-infinite Crack Tip in Nanocomposites. Acta Mechanica Solida Sinica, 32(2), 160-172.

[7] He T, Xiao W, Fang Q, et al (2018). Influence of grain boundary sliding near a nanovoid on crack growth in deformed nanocrystalline materials. International Journal of Mechanical Sciences, 144, 842-848.

[6] He T, Feng M (2018). Effect of nanotwin near a branched crack tip on crack blunting in deformed nanocrystalline materials. Acta Mechanica, 229(8), 3223-3234.

[5] He T, Feng M (2018). Combined effects of cooperative grain boundary sliding and migration and reinforced particles on crack growth in fine-grained Mg alloys. Journal of Alloys and Compounds, 749, 705-714.

[4] He T, Feng M (2017). Influence of nanoscale deformation twins near a slant edge crack tip on crack blunting in nanocrystalline metals. Engineering Fracture Mechanics, 184, 286-295.

[3] He T, Xiao W, Zhang Y, et al (2017). Effect of cooperative grain boundary sliding and migration on dislocation emission from a branched crack tip in deformed nanocrystalline solids. International Journal of Fracture, 206(1), 1-10.

[2] He T, Xiao W, Zhang Y, et al (2017). Effect of special rotational deformation on the dislocation emission from a branched crack tip in deformed nanocrystalline materials. Acta Mechanica, 228(3), 823-836.

[1] He T, Xiao W, Li X, et al. (2017). Interaction between a screw dislocation and a circular nano-inhomogeneity with a bimaterial interface. Acta Mechanica Solida Sinica, 30(1), 39-50.


2019  留学基金委-博士联合培养公派奖学金

2018  博士研究生国家奖学金

2016  硕士研究生国家奖学金

版权所有 © 2014 中国·3003新葡的京(集团)股份有限公司官网 沪交ICP备05053   流量统计